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rge areas of forest in the U.S. and Canada. Understanding ecosystem impacts of
such disturbances requires knowledge of host species distribution patterns on the landscape. In this study,
we mapped the distribution and abundance of host species for the spruce budworm (Choristoneura
fumiferana) to facilitate landscape scale planning and modeling of outbreak dynamics. We used multi-
temporal, multi-seasonal Landsat data and 128 ground truth plots (and 120 additional validation plots) to
map basal area (BA), for 6.4 million hectares of forest in northern Minnesota and neighboring Ontario. Partial
least-squares (PLS) regression was used to determine relationships between ground data and Landsat sensor
data. Subsequently, BA was mapped for all forests, as well as for two specific host tree genera (Picea and
Abies). These PLS regression analyses yielded estimates for overall forest BA with an R2 of 0.62 and RMSE
of 4.67 m2 ha−1 (20% of measured BA), white spruce relative BAwith an R2 of 0.88 (RMSE=12.57 m2 ha−1 [20%
of measured]), and balsam fir relative BAwith an R2 of 0.64 (RMSE=6.08 m2 ha−1 [33% of measured]). We also
used this method to estimate the relative BA of deciduous and coniferous species, each with R2 values of 0.86
and RMSE values of 9.89 m2 ha−1 (23% of measured) and 9.78 m2 ha−1 (16% of measured), respectively. Of
note, winter imagery (with snow cover) and shortwave infrared-based indices – especially the shortwave
infrared/visible ratio – strengthened the models we developed. Because ground measurements were made
largely in forest stands containing spruce and fir, modeled results are not applicable to stands dominated by
non-target conifers such as pines and cedar. PLS regression has proven to be an effective modeling tool for
regional characterization of forest structure within spatially heterogeneous forests using multi-temporal
Landsat sensor data.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction
Compared to other forest disturbances, insects and disease
influence the largest area of forests in both the U.S. and Canada,
affecting an estimated 20.2 million hectares in the U.S. with economic
costs over $1.5 billion (Dale et al., 2001). The understanding and
effective management of such disturbances requires knowledge of the
distribution and patterns of host species for insects and diseases. This
facilitates understanding of the potential for large-scale disturbances,
such as severe insect outbreaks, but also provides the context to
understand the likely consequences of outbreaks on a regional scale,
such as changes in tree species composition, age structure, and fuel
conditions (Hadley, 1994; White & Host, 2003; Williams & Birdsey,
2003). One of the most destructive insects to North American spruce–
fir forests is the spruce budworm (Choristoneura fumiferana), whose
widespread, recurrent outbreaks (see Blais, 1983; Erickson & Hastings,
1978; Williams & Birdsey, 2003) are a primary driving force shaping
the structure, function, and fire history of these forests (Fleming et al.,
l rights reserved.
2002). Because of their host-specific nature, spruce budworm out-
breaks are responsive to the abundance and spatial distribution of
their host and, consequently, are also suspected of sensitivity to
feedback related to forest succession and change (Bergeron & Leduc,
1998; Hessburg et al., 1999).

Forest change, attributed primarily to increased effectiveness of
fire suppression in the Border Lakes region of northernMinnesota and
neighboring Ontario over the last century, has resulted in the con-
version of pioneer species such as jack pine (Pinus banksiana) and
quaking aspen (Populus tremuloides), to mixed-age, shade-tolerant
species composed of white spruce (Picea glauca), black spruce (Picea
mariana), balsam fir (Abies balsamea), and white cedar (Thuja
occidentalis) (Baker, 1992; Frelich & Reich, 1995; Scheller et al.,
2005). In recent decades, growth in demand for pulpwood has led
to forest management strategies (e.g., clear-cutting) that promote
growth of increasingly large, homogenous areas of aspen–fir forest
associations (Blais, 1983; Wolter & White, 2002) which have greatly
altered this region's landscape structure and dynamics (Pastor et al.,
2005; White & Host, 2003; Wolter & White, 2002).

Because spruce budworm host-species such as balsam fir have
become more dominant in the landscape, the probability of new
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outbreaks has also increased (Blais,1983; Sturtevant et al., 2004). Early
efforts to understand spruce budworm dynamics in this region
identified three key stand characteristics that explained 56% of the
variation in balsam fir mortality following an outbreak: percent basal
area (BA) in spruce, percent BA in non-host species, and BA of balsam
fir (Batzer, 1969). Spatially explicit forest landscape simulation models
such as LANDIS are well suited to study the potential effects of
multiple spatially interactive drivers of ecological change on future
forest composition (Scheller & Mladenoff, 2005). Efforts to model and
manage for insect impacts at landscape and regional scales therefore
depend on the availability of spatially explicit data on host species
distribution. Satellite remote sensing represents a valuable source for
supplying input data for regional simulation modeling.

1.1. Study objective

The broad objective of the study is to map the distribution and
abundance of spruce budworm host species (fir and spruce) in the
northeastern Minnesota and adjacent Ontario to better understand
the dynamics of this insect and identify landscape-scale management
strategies that may minimize outbreak frequency and severity. The
specific goal of this paper is to demonstrate a novel approach for
modeling and mapping forest basal area (BA) and species abundance
using readily available sources of remote sensing data. We employ
partial least-squares (PLS) regression with multi-temporal Landsat
sensor data to map spruce (P. glauca, P. mariana) and fir (A. balsamea)
distribution and BA for a 6.4 million hectare area covering the Border
Lakes region of northern Minnesota, U.S.A. and northwestern Ontario,
Canada (Fig.1). The strategy involves use of all the reflectance bands of
Landsat-5 and -7 plus several spectral indices (SI) derived from these
sensor data for multiple image dates per WRS-2 path and row. PLS is
used with Landsat data and field data to produce models for mapping
total forest BA (TBA), relative BA of fir (FIR), relative BA of spruce
(SPRUCE), relative BA of deciduous forest (DEC), and relative BAs of
coniferous forest (CON). While PLS has been used extensively with
hyperspectral data (Coops et al., 2003; McDonald et al., 2003; Ourcival
et al., 1999; Smith et al., 2002, 2003; Townsend et al., 2003), we
demonstrate the capability of the algorithm to handlemulti-temporal,
broad band, satellite sensor data. PLS regression is convenient as it: 1)
allows simultaneous modeling of multiple continuous predictor
variables; 2) does not make unrealistic assumptions about spectral
or ground measurement error, such as in ordinary least-squares
Fig. 1. Study area in northern Minnesota and northwestern Ontario showing the six
Landsat footprints and the Border Lakes focus area in red. The region includes land
ownerships with varying forest management strategies: Chippewa National Forest
(1), Superior NF (2), BWCA Wilderness (3), Voyageurs National Park (4), and Quetico
Provincial Park (5).
regression (Cohen et al., 2003; Curran & Hay, 1986); and 3) addresses
the problem of collinearity (dependence) among multiple indepen-
dent and dependent variables (Helland, 1988).

1.2. Background

1.2.1. Partial least-squares regression
PLS is a predictive, 2-block regression strategy that uses estimated

linear, latent variables or components, obtained through optimization
of covariance measures (Nielsen, 2002), to simultaneously analyze
two data sets (e.g., spectra and physical/chemical properties) collected
from a single object of interest (Norgaard et al., 2000). PLS identifies a
select number of eigenvectors from an independent data matrix
capable of generating score values that capture predictor variance and
are highly correlated with the response variables (Arenas-Garcia &
Camps-Valls, 2007). Contrary to ordinary least-squares and multiple
linear regression, PLS regression does not assume zero error in the
predictor data (often falsely assumed for image data, Curran & Hay,
1986). PLS regression assumes that, if well sampled, vectors in the
predictor space (irrespective of error) should provide superior
predictive power for additional observations when there is a high
degree of correlation among predictor variables (SAS, 2000). Ulti-
mately, PLS regression seeks a balance between explaining variations
in both response and predictor variables (SAS, 2000).

PLS regressionwas formulated out of a need tomodel information-
scarce datasets in the social sciences (Wold, 1966, 1975). Kowalski
et al. (1982) extended the use of PLS regression to chemometric
applications using full-spectrum radiometer data. The PLS regression
method is attractive because it provides a means to reduce a large
number of collinear variables into relatively few relevant, non-
correlated, latent structures or components (Norgaard et al., 2000).
PLS regression differs from principal components regression (PCR) in
that it uses the covariance between X and Y variables to form latent
variables. As a result, variance among the Y variables is described
better than the principal components of PCR that are based solely on
the X variables (Zang et al., 2007). PLS regression is also superior to
canonical correlation analysis (CCA) in situations where there are
fewer observations with respect to variables, as PLS strives to
maximize covariance, rather than correlation, between latent compo-
nents (Zang et al., 2007).

In traditional multiple linear regression, when there are more
samples than independent variables (e.g., full-spectrum remote sensing
data) an exact solution for the regression coefficients (B vector) is not
possible without minimizing the length of the residual vector. This may
be accomplished using the least-squares method:

B ¼ X0Xð Þ−1X0Y: ð1Þ

However, in the presence of collinearity among the X vector
variables, an inverse for X′X may not be possible, causing instability
among regression coefficients (Geladi & Kowalski, 1986). PLS regres-
sion reduces the rank of the X′X matrix by using a subset of the X′X
eigenvectors, known as principal components or latent variables
(hereafter referred to as components), to represent X′X in Eq. (1)
(Wold et al., 1984) giving it the form of a generalized inverse
(Marquardt, 1970). The resultant model is composed of two outer
relations derived from the eigenstructure decomposition of X and Yas
well as an inner relation coupling the X and Y score matrices (Geladi &
Kowalski, 1986).

The key to PLS regression is deciding howmany components to use
for a given model complexity. While it is possible to compute as many
components as there are predictor variables, a smaller initial number
of components are typically computed (see SAS, 2000). This allows
lower order components – often describing random measurement
error as well as retaining collinearity problems (Geladi & Kowalski,
1986) – to be discarded and reduces the chance of over fitting the
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model. The number of components to use for optimal model
complexity is determined iteratively via cross-validation (Geisser,
1974; Stone, 1974; Wold et al., 1984).

Cross-validation can be initiated several ways, but in each strategy
data points are withheld either individually or in groups followed by
recursivemodel fittingwith different numbers of components. Retained
points are used to compute residuals and withheld points are used to
calculate prediction error for each level of model complexity. Iterations
cease after each data point has beenwithheld once. The cumulative sum
of individual point prediction errors is known as the predicted residual
sum of squares (PRESS) and provides a measure of model predictive
capacity for a particular data set (Wold et al., 1984). The final level of
model complexity (number of components) is chosen by statistically
comparing the PRESS values of successively more complexmodels (Van
der Voet, 1994). When addition of the next successive component (i.e.,
describing less of the covariance between eachX score and correspond-
ing Y score than the preceding component) fails to improve the PRESS
statistic by some predetermined amount, the precedingmodel becomes
final (Wold et al., 1984). Non-correlated components that are retained
are then used in PLS regression to parameterize predictive models. The
result is that the estimated regression coefficients are stabilized (Wold
et al., 1984) making PLS models much more robust than classical
multiple linear regression or principal components regression (Geladi &
Kowalski, 1986).

1.2.2. PLS applications in forest ecosystems
The use of PLS regression to calibrate models of biochemical and

biophysical forest parameters using full-spectrum (i.e. hyperspectral)
imagery (e.g., AVIRIS 224 bands and Hyperion 220 bands) has become
routine (Coops et al., 2003; Martin et al., 2008; McDonald et al., 2003;
Ourcival et al., 1999; Smith et al., 2002, 2003; Townsend et al., 2003).
Smith et al. (2002) demonstrated that not only is it possible to
measure whole-canopy nitrogen in small experimental forest ecosys-
tems, but that it is also possible to calibrate multiple, contiguous
models enabling landscape-scale forest productivity estimation for a
diverse range of forest communities in New England. These same basic
techniques have been employed successfully for a broad range of
forest communities (Coops et al., 2003; Martin et al., 2008; McDonald
et al., 2003; Townsend et al., 2003).

Recently, improvement in prediction potential has been achieved by
first identifying a salient set of the hyperspectral bands (those showing
elevated sensitivity to the response variable) prior to PLS regression
analysis (Forina et al., 1999; Jarvis & Goodacre, 2005; Leardi & Gonzalez,
1998; Li et al., 2007; Lindgren et al., 1993; Swierenga et al., 1998). Pre-
selection excludes bands showing low sensitivity to the response
variable. Such variables adversely affect model calibration and result in
both large relative bias toward zero and small additive bias away from
the origin regardless of signal to noise distribution (Spiegelman et al.,
1998). Thus, careful design of the pre-selection process is required. One
popular method is the genetic algorithm (GA) of Holland (1975, also see
Jarvis & Goodacre, 2005), which has been demonstrated to be especially
useful for hyperspectral data (Li et al., 2007).

Many approaches have been developed to reduce the dimensionality
of broad band, satellite sensor data (e.g., Landsat) for estimating forest
biophysical parameters (Ardö, 1992; Clark et al., 2004; Cohen & Spies,
1992; Cohen et al., 2003; Hall et al., 1995; Healey et al., 2006; Li &
Strahler, 1985; Peddle et al., 1999; Song, 2007; Song et al., 2007; Song &
Woodcock, 2003; Woodcock et al., 1997; Zheng et al., 2004; and many
more). Where some approaches strive to condense X-vector data into
one meaningful independent variable prior to regression (Cohen et al.,
2003), PLS regression provides a means to handle the X-vector space
(multiple sensor bands and derivatives) to provide simultaneous
estimates for the Y-vector dependent variables. However, examples of
research using PLS regression for calibration of broad band, multi-
temporal, remote sensingmodelswith forest structural parameters (e.g.,
basal area, tree height, or canopy closure) have not yet been published.
Nielsen (2002) provides an example of multiset canonical correlation
analysis (CCA) usingmulti-temporal Landsat-5 sensor data tomap forest
change but only mentions PLS regression as being a similar approach.
Thus, PLS regression applied to multi-temporal, Landsat sensor data
represents a novel, robust, and appropriate approach for regional forest
parameter prediction.

2. Methods

2.1. Study region

The 70,000 km2 study region consists of the Border Lakes
ecoregion, straddling northern Minnesota and Ontario, plus a 50 km
surrounding buffer (Fig. 1). The total area, hereafter referred to as the
Border Lakes (BL), is covered by portions of six Landsat scenes (each
scene is 185×185 km) and includes all of the Superior National Forest
(SNF), Boundary Waters Canoe Area (BWCA) wilderness, Voyageurs
National Park (VNP), and Quetico Provincial Park (QPP) (Fig. 1). The BL
region has a continental climate, with long, cold winters and relatively
short summers (Heinselman, 1973). Average January and July
temperatures are −16 °C and 19 °C, respectively. Sixty-seven percent
of the average annual precipitation (61 cm) is received between May
and September, with June being the wettest overall month (account-
ing for 17% of the total average). Numerous lakes, shallow soils over
Precambrian bedrock, and gentle relief that is primarily of glacial
origin characterize this region.

BL forest cover is considered transitional between the sub-boreal,
Great Lakes–St. Lawrence forests and boreal forest (Baker, 1989;
Heinselman, 1973). The BWCA, VNP, and QPP are protected from
commercial logging and are largely composed of pine (P. banksiana,
P. resinosa, and P. strobus), spruce (P. glauca, and P. mariana), and balsam
fir (A. balsamea), with lesser amounts of white cedar (T. occidentalis),
tamarack (Larix laricina), aspen (P. tremuloides, P. grandidentata, and
P. balsamifera), paper birch (Betula papyrifera), and red maple (Acer
rubrum). Unprotected forests are intensively managed for wood fiber
and have a higher dominance of aspen, spruce, and fir forest type
associations (Pastor et al., 2005; Wolter & White, 2002). The western
portion of the BL region, on the U.S. side, is dominated by peatlands that
support pure stands of black spruce (P.mariana) and tamarack,while the
southeast region,within Lake Superior's North Shore Uplands ecological
subsection, supports pure forests of sugar and red maple (A. saccharium
and A. rubrum) (Wolter & White, 2002).

2.2. Field data

Field plot data (n=128) used to model forest structural parameters
were collected during the summers of 2003 and 2004 and distributed
evenly between Landsat WRS-2 paths 26 and 27 to facilitate
comprehensive mapping (Fig. 1). Each plot consists of a cluster of five
subplots located at the intersection and four end points of two crossing
50×50 m transect lines placed near center of large (≥7×7 pixels or
4.4 ha), homogenous stands. Sufficient stand size and homogeneity
assured that any standedge effectswould beminimized during analysis,
and that image misregistration errors, if greater than 15 m, would be
inconsequential. Basal area (BA) by species was measured at each
subplot using a metric factor 2 prism. In addition, percent cover of
vegetation was visually estimated and placed in one of 10 cover classes
according to Peet et al. (1998) for the canopy, subcanopy, shrub/sapling,
and herb layers; the coniferous and deciduous portion was also
estimated for each layer. Each successive percent cover classes
approximately doubles the previous class (i.e. 0–1, 1–2, 2–5, 5–10, 10–
25, 25–50, 50–75, 75–95, 95–100%), as the humanmind ismore attuned
to these geometric increases in cover than to a linear scale (Peet et al.,
1998). Additional measurements made at the center of each plot
included tree heights, age, and visual estimates of cover by species. Total
vegetative coverwas also visually estimated at height intervals of 0–1m,



3974 P.T. Wolter et al. / Remote Sensing of Environment 112 (2008) 3971–3982
1–2 m, 2–5 m, and at 5 m intervals to the top of the canopy to
characterize forest vertical structure. Overall canopy openness was
measuredusingadensiometer at fouraspects ateachof thefive subplots
and then averaged. Photos of each plot were taken and general site
information was recorded (e.g., slope, aspect, etc.). Tree heights were
measured using an Impulse 200 laser range finder (Laser Technology
Inc., Edgewood, CO) mounted on a monopod, while tree age was
determined from bole increment bore samples taken at 1.37 m above
ground.

Field plot data were entered into spreadsheets, checked for errors,
and then averaged across the five subplots per plot. The averaged data
were analyzed to determine the total live and dead BA for each plot, as
well as the relative BA of spruce, fir, deciduous, and coniferous species.
Total cover in the understory (shrub layer plus subcanopy layer) of
conifer species was also estimated as the product of total cover and
estimated percent cover coniferous.

During the summers of 2006 and 2007, field data for an additional
120 plots were collected from random locations within the study and
set aside for model validation. These field datawere processed so as to
match the forest structural attributes to be modeled using the 2003–
2004 field data (Total BA of forest cover and the relative BA of Abies,
Picea spp., deciduous, and coniferous).

In the two field campaigns, we recorded the location of each plot's
center using a Thales Mobile Mapper (Thales Navigation, Inc., Santa
Clara, CA) or Trimble Pro-XR (Trimble Navigation Ltd., Sunnyvale, CA)
GPS receiver. We post-processed and averaged the coordinates to
within one meter of true location using each company's respective
software and the National Geodetic Survey's continuously operating
reference station (NGS-CORS) data from Grand Marais, MN.

2.3. Image data

Field plots and satellite data cover six adjacent WRS-2 Landsat
path/row combinations: paths 26–28 rows 26–27 (Fig. 1). Image data
(Table 1) were paired by date for both rows in each of the three paths,
and all images were acquired for a period that was proximal (2000–
2003) to field data collection (2003–2004). All image data were
coregistered to a master composite image using the Erdas Imagine
AUTOSYNC routine (Leica GeoSystems, 2006). With this routine, 500
evenly distributed image-to-image tie points were automatically
identified using sub-pixel correlation. A five meter RMSE threshold
was set for each image prior to AUTOSYNC's calculation of a second-
order block triangulation (also known as bundle adjustment, see
Granshaw, 1980) to co-register input images to the master image. The
master composite image was produced from six Global Land Cover
Facility (GLCF) GeoCover Landsat images which are precision-
orthorectified and geocorrected (source: www.landcover.org).
Table 1
Landsat satellite sensor data and derivatives used in analyses

Sensor Path Row Date BLU GRN RED NIR SWIR5

TM 26 26:27 3/3/02⁎ x x x x
ETM+ 26 26:27 5/14/02⁎ x x x x
ETM+ 26 26:27 7/1/02 x x x
TM 26 26:27 9/27/02 x x x x x
ETM+ 27 26:27 2/27/01⁎ x x
ETM+ 27 26:27 4/29/00⁎ x x x x x
ETM+ 27 26:27 5/21/02 x x x x
ETM+ 27 26:27 7/5/01 x x
ETM+ 27 26:27 8/25/02 x x x
TM 27 26:27 10/7/03 x x x x
TM 28 26:27 2/10/02⁎ x x x x
ETM+ 28 26:27 4/20/00⁎ x x x x
ETM+ 28 26:27 6/26/01 x x x x
ETM+ 28 26:27 7/15/02 x x x
ETM+ 28 26:27 8/26/00 x x x x x

Images subject to haze correction in bold, and images used to stratify conifers from deciduo
Following co-registration, each image was inspected for potential
haze problems and the visible bands of problematic images (Table 1)
were corrected using a haze removal algorithm (ATCOR, Richter,
2003). After this, top-of-atmosphere reflectance was calculated using
calibration coefficients provided in the image header files.

For each field plot, differentially corrected GPS data were used to
extract reflectance values from each Landsat image for nine pixel
locations — the center pixel plus the eight neighboring pixels. From
this, the image data and derivative variables used for model
development (Table 1) included:

• Landsat bands (1–5, 7);
• TC1, TC2, and TC3 — Tasseled Cap derivatives of brightness,
greenness, and wetness (Crist & Kauth, 1986);

• SAVI — soil-adjusted vegetation index (Huete, 1988)— similar to the
normalized difference vegetation index (NDVI, Rouse et al., 1974;
Tucker, 1979), but with a correction factor that limits soil back-
ground effects;

• SR — simple NIR/RED ratio (Jordan, 1969);
• MSI — moisture stress index (Rock et al., 1986) — originally used to
discriminate and quantify forest decline (Vogelmann & Rock, 1988)
and moisture stress (Hunt & Rock, 1989);

• GEMI— global environmental monitoring index (Pinty & Verstraete,
1992), which was first formulated to minimize atmospheric effects
in AVHRR data; and

• SVR — shortwave infrared/visible ratio (derived by the authors),
which uses the mean of the two shortwave infrared (SWIR) bands
divided by the mean of the three visible bands.

Variance among reflectance values for each of the nine pixel
locations was assessed prior to analyses. For each plot, pixel locations
that had reflectance greater than one standard deviation from the
focal mean were excluded from further analyses. The remaining pixel
locations were then linked to the field data associated with the center
pixel's location.

Most of the image derivatives were selected as they have been
routinely used to study forest structural parameters (see Asner et al.,
2003). In particular, indices using the SWIR bands were chosen as this
region of the electromagnetic spectrum has been demonstrated to be
sensitive to forest density and tree size (Cohen & Spies, 1992; Cohen
et al., 1995; Hansen et al., 2001; Lu et al., 2004). The SVR index was
developed by the authors specifically to provide a SWIR-based index
that excluded NIR.

2.4. Initial forest stratification

In an effort to partition potential errors and maximize PLS model
precision, both imagery and model development were stratified
SWIR7 TC1 TC2 TC3 GEMI MSI SAVI SR SVR

x x x x x x
x x x x x
x x x x x x x x
x x x x x

x x x x x
x x x x x x x x

x x x x x x
x x x
x x x x

x x x x x
x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x

us trees indicated with asterisks.

http://www.landcover.org


Table 3
PLS regression model cross validation and statistics by Landsat path

Path

26 27 28

Image variables used 40 51 49
Forest variables used 6 8 5
PRESS 0.46 0.47 0.43
Factors used 6 10 6
Model variation explained (%) 89.9 90.9 82.5
Field data variation explained (%) 79.7 80.5 82.6
Model PrNF 0.0001 0.0001 0.0001

Forest parameter statistics R2 RMSE R2 RMSE R2 RMSE

Total BA (TBA) 0.62 4.75 0.62 4.71 0.70 1.83
Relative BA Abies (FIR) 0.63 4.99 0.65 6.05 0.80 3.64
Relative BA Picea (SPRUCE) 0.88 12.32 0.88 12.52 0.87 9.00
Relative BA deciduous (DEC) 0.88 9.77 0.86 9.91 0.88 5.57
Relative BA coniferous (CON) 0.86 9.30 0.86 9.78 0.87 5.35
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according to three broad structural classes: 1) pure conifer; 2) mixed
forest where conifer and hardwood trees share the overstory; and 3)
hardwood forest with an understory conifer component. To do this,
Landsat imagery from spring (leaf-off and high sun angle) and winter
(snow cover) (Table 1) were used to stratify coniferous forest area, and
reference data, into the three classes listed above. Low altitude, digital,
aerial photographs (~70% leaf-off), taken on 5 October 2006 (0.2 m
pixel resolution), were used as ground truth for identifying the
presence of coniferous forest in leaf-off spring Landsat imagery.
However, because of the presence of copious amounts of sphagnum
moss (Sphagnum spp.) and broad-leaved, evergreen, vegetation (e.g.,
Ledum groenlandicum, Kalmia polifolia, and Chamaedaphne calyculata)
associated with treeless bogs and lowland black spruce stands,
coniferous forest area was greatly overestimated. Thus, to mask out
remaining non-forest vegetation, we used thresholds applied to
Tasseled Cap brightness (TC1) calculated from winter Landsat data.
Because snow depth archives for northeast Minnesota (http://climate.
umn.edu) indicated between 0.5–1.5 m of snow cover for all three
Landsat paths within the study area, we assumed that more prostrate
vegetation, including Ericaceae-dominated brush and mosses, would
be sufficiently covered by snow and, hence, hidden from view. Indeed,
areas of high brightness (TC1), associated with snow-covered Erica-
ceae-dominated brush, were easily distinguished from coniferous
forest using this methodology. Summer NDVI imagery (leaf-on) was
then used to distinguish mixed forest where conifers shared the
overstory from mixed stands where conifers occupied only the
understory. Again, the 5 October 2006 aerial photography was used
as reference data.

2.5. PLS regression model development

Separate PLS regression models were developed for the three
forest structure classes within each of the three Landsat paths (26, 27,
and 28) to predict total BA (TBA) of all standing live trees and the
relative BAs of four specific forest components: fir (FIR), spruce
(SPRUCE), coniferous (CON), and deciduous (DEC) trees. The stratifica-
tion of PLS model development by Landsat path was necessary as each
contained a different number and/or set of image dates (Table 1). Thus,
a recursive backward elimination variable selection procedure, similar
to that described by Forina et al. (1999), was used to pre-select the
most relevant image variables from the full set available for each
respective satellite path. To do this, an initial PLS regressionmodelwas
fit using all image variables (X-vector), but holding the forest variables
(Y-vector) to only the five listed above. In the first iteration the blue
band was removed followed by fitting a new PLS model. If the PRESS
statistic of this new model was lower than PRESS for the full model,
the blue band was excluded from further analyses and the new, lower
PRESS became the test criterion for the next iteration. This continued
until all image data were assessed.

After the best set of image variables was determined for paths 26
and 27, a forward step procedure was used to iteratively assess
additional ground variables for their ability to improve the PRESS
statistic (Table 2). Because an insufficient number of field plots were
available for path 28, path 27's modeled results from the path 27–28
overlap region (~70 km wide) were used instead to develop training
data for path 28 PLS model development. Although such an approach
to the development of training data is less preferred than the use of
Table 2
Forest variables used in PLS regression analyses by satellite path

Path TBA FIR SPRUCE DEC CON iSPRUCE iCON iDEC

26 x x x x x x
27 x x x x x x x x
28 x x x x x

The prefix (i) indicates (% cover+relative BA)/2 for the respective variable.
ground data, the decline in mapping accuracy using image-derived
training data can be very small for immediately adjacent scenes
(Knorn et al., 2008). In this case, the area modeled using these training
data represented b17% of the total study area (see Fig. 1). Since these
training data consisted of only the five structure variables listed above,
iterations for the best PLS regression ended after all path 28 image
data were assessed.

PLS regression model results are useful as diagnostic tools for
determining salient spectral regions and, in this case, seasons for
optimal mapping of forest structure using Landsat data. Thus, to
facilitate these analyses, the absolute value of resulting PLS regression
component loadings (hereafter referred to simply as loadings) for TBA,
FIR, SPRUCE, DEC, and CONwere aggregated within each Landsat path,
summed by month and band, and then scaled by the associated
number of image dates and bands.

3. Results

3.1. PLS regression models

Initially, we stratified imagery and PLS model development
according to three broad structural classes in an effort to isolate
potential sources of error and improve model performance. However,
this stratification approach did not yield model improvements over
the pooled data. Thus, we report only results for the pooled models
(summarized in Table 3). The map-derived “ground” data used for
path 28, derived from neighboring path 27 prediction results,
provided the best PLS models with 1) the lowest PRESS statistic, 2)
highest percentage of variation in field data explained, 3) the best R2

values for both TBA (0.70, Fig. 2A) and FIR (0.80, Fig. 2B), and 4) the
lowest RMSE of prediction (Table 3). The overall PLS regression model
results for paths 26 and 27 were similar with both explaining ~80% of
the variation in the field data (Table 3). However, by definition, the
lower PRESS statistic and fewer latent variables used for the path 26
PLS model indicates a better model fit than path 27 (Table 3). PLS
prediction results for SPRUCE, DEC, and CON were all similar for the
three different models (path 26, 27, 28) with R2 values ranging
between 0.86 and 0.89 (Table 3, Figs. 2C, 3A, B).

3.2. PLS component loadings

In each Landsat path the SWIR-visible ratio (SVR) had the highest
loadings of all image variables, followed closely by Tasseled Capwetness
(TC3) (Fig. 4A). Conversely, the lowest loadings showed no obvious
trends as most weak variables had been removed by the stepwise
selection procedure discussed above. Seasonal analysis showed that
Landsat data acquired in February (with snow cover) had the highest

http://climate.umn.edu
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Fig. 3. PLS model relative basal area predictions versus observed data for DEC (A) and
CON (B) in Landsat paths 26, 27, and 28.

Fig. 2. PLS model basal area (A) and relative basal area (B and C) predictions versus
observed data for TBA (A), FIR (B), and SPRUCE (C) in Landsat paths 26, 27, and 28.
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loadingswhere theywere used (Fig. 4B).March Landsat data (with snow
cover) were used in place of February data for path 26. However, the
highest component loadings recorded for path 26were from September
and May rather than the March winter data (Fig. 4B).

Path 26 ratio images produced from the 3 March 2002 Landsat-5
data revealed the presence of systematic noise patterns at approxi-
mately every eighth scan line throughout the entire image. These
radiometric anomalies were dissimilar from, and in excess of, typical
coherent noise levels that are characteristic of Landsat TM data. Visual
inspection of the raw band data revealed only minor indications of
these radiometric flaws, and image metadata provided no indication
of any suboptimal sensor anomaly or band quality codes.

Assessment of aggregated PLS component loadings by band for the
five separate forest structural attributes show SVR provided the
highest absolute values for SPRUCE and FIR in each path (Fig. 5A, B, C),
while TC3 and MSI rivaled SVR loadings for DEC and CON in paths 26
and 27, respectively. Visible blue ranked highest for TBA in paths 26
and 27, while MSI was highest for TBA in path 28. The high PLS loading
on visible blue for TBA (Fig. 5A, B) came primarily from the February
data in path 27 and from March and May data in path 26; all with R2

values between 0.27 and 0.30 (Table 4). There was no consensus
among the lowest absolute PLS loading for the five structural
attributes; however, many were from visible green, visible red, and
the greenness indices (i.e., GEMI, SAVI, SR, and TC2) (Fig. 5).

In terms of image date, February PLS loadings ranked the highest for
almost all forest structural attributeswithinpaths 27 and 28 (Fig. 6). The
exceptions were FIR (April) and TBA (June) in paths 27 and 28,
respectively (Fig. 6B, C). For Path 26, where winter imagery (March)
was affected by excessive systematic noise, May ranked highest for
SPRUCE, DEC, and CON; September for FIR; and July imagery for TBA
(Fig. 6A). July Landsat data were among the least important in paths 26
and 28, while patterns were not as clear in path 27 (Figs. 6, 4B).

3.3. PLS model validation

In addition to the cross validation procedure performed as an
intrinsic part of the PLS regression procedure (Table 3), an additional
validationwas performed using field data collected in the summers of
2006 and 2007. Forest structural data derived from these field data
were used to assess the accuracy of model predictions for TBA, FIR,
SPRUCE, DEC, and CON structure components. These field data are
representative of all the major forest cover types found in the study
region (120 plots); including forest cover types with spruce budworm
host species (35 plots). The independent validation data are located
within the overlap region of Landsat paths 26 and 27, for which the
path 27 models were used in mapping structure. As such, the
independent validation results presented below are relevant only for
the path 27 PLS models; accounting for ~70% of the study area (Fig. 1).

Ordinary least-squares regression (OLR) was performed between PLS
predictions of forest structural parameters and independent field
validation data for 1) all forest cover types combined (Table 5 A) and 2)
for plots composed primarily of host species (Table 5B). The relationship



Fig. 4. Total absolute PLS loading weights by band (A) scaled by number of images per path and by month (B) scaled by the number of bands per image.
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between predicted and measured TBA was weak when all cover types
were combined (R2ALL=0.22, RMSEALL=7.82 m2/ha), whereas the TBA
relationshipwasclearlybetterwhenusingonlyvalidationdata taken from
within host-species cover types (RHOST2 =0.63, RMSEHOST=4.81 m2/ha).
Relationships betweenpredicted and observed values for the four relative
BA variables were also stronger within host-specific cover types than
when all forest cover types were combined (Table 5). Regression slope
coefficients forhost-specific validation resultswere veryconsistent (0.67–
0.80, SE 0.03), while slopes among the non-host-specific plotsweremuch
more variable (0.41–1.62, SE 0.26) (Table 5).

In general, PLS regression models worked very well within stands
composed primarily of host tree species (spruce and/or fir), but were less
precisewhenapplied to standsdominatedbyotherconifer species.Within
tamarack stands, independent validation revealed a strong relationship
between observed and predicted TBA (R2=0.80), with FIR predicted
accuratelyat 0%.However, SPRUCEwas consistentlyover estimatedwithin
tamarack stands at ~45% through the observed range from 5–28%.
Conversely, for red/whitepine andcedar, therewas little tono relationship
between observed and predicted TBA. The three field plots located in jack
pine exhibited a much better relationship, but there were too few field
plots to be conclusive. In non-host stands SPRUCE was over estimated at
40–75% for instances where observed SPRUCE was only 1–7%.

4. Discussion

4.1. Important spectral regions

The fact that indices containing SWIR (e.g., SVR, TC3, MSI) were
important for predicting forest BAwas not unexpected. Previous studies
conducted in largely coniferous forests have shown that the SWIR bands
of Landsat are especially responsive to forest vegetation density
(Brockhaus & Khorram, 1992; Franklin et al., 2000; Horler & Ahern,
1986), volume (Ardö, 1992), and leaf area index (Brown et al., 2000).
Landsat TMWetness (TC3), a contrast of SWIRwith the visible and near
infrared bands, has been advanced as providing the most accurate
structure information in closed canopy forests due, in part, to an
apparent insensitivity to topographical effects (Cohen & Spies, 1992;
Cohen et al., 1995). Hansen et al. (2001) also found good correlations
between TC3 and a structural complexity index derived from the
application of principal components analysis (PCA) on structure
measurements of mature to old growth coniferous forests (N150 years).

The importance of SVR to prediction within each of the Landsat
paths for all but one (TBA) of the forest structural parameters was
unexpected (Fig. 5). The better performance of SVR over the other
SWIR-related indices eludes specific explanation, though at least two
factors may be relevant. First, using averages of both the three visible
bands and the two SWIR bands in the calculation of SVR partially
dampens the random effects of coherent noise (i.e., patterns of low-
level, periodic noise present in all Landsat data) by averaging highly
correlated bands with differing noise. Second, a spectral relationship
between total foliar pigmentation, chlorophyll content, vegetation
density, and canopy architecture may be enhanced using a ratio of
these broad spectral regions. For example, both TM5 and TM7 are
known to correlate inversely with conifer forest age (r=−0.62 and
−0.59, respectively), while TM7 alone correlates inversely with conifer
basal area (r=−0.48) (Brockhaus & Khorram, 1992), and both vary
inversely with vegetation density (Ahern et al., 1991; Ardö, 1992;
Franklin et al., 2000; Horler & Ahern, 1986).



Fig. 5. Scaled absolute PLS band loadings for the five structure variables in paths 26 (A), 27 (B), and 28 (C).
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The responsiveness of visible bands (especially red) to vegetation
biomass (Roy & Ravan, 1996) and other structural properties is well
documented (Brown et al., 2000; Goetz & Prince, 1996; Tucker, 1979;
Turner et al., 1999). Specifically, coniferous forest reflectance in the
visible varies inversely with biomass parameters such as basal area
(Franklin, 1986). In addition to red, visible blue provides information
relating to coniferous forest species and canopy condition (Nelson et al.,
1984; Tucker,1978). Nelson et al. (1984) found thatwhen analyzed alone
or in combination with NIR and/or SWIR, visible blue reflectance
contained significant, unique spectral information for distinguishing
northern forest cover types. Balsam fir foliage is similar to black spruce
andwhite spruce in termsof visibleblue reflectance, buthasmuch lower
visible green and red reflectance (see Pinard & Bannari, 2003). As such,
balsam fir appears more bluish-green than either spruce or pine
canopies in our low altitude color aerial photography. Here, the
importance of visible blue with respect to FIR is evident in path 26
(Fig. 5A), which has the highest proportion of balsam fir of the three
Landsat paths analyzed. In this case, visible blue and TC1 (Brightness)
were essentially tied for second highest absolute PLS loading, behind
SVR, among the 14 image variables analyzed (Fig. 5A). Image brightness
(e.g., albedo; TC1, PCA1) is known to correlate with vegetation amount
(Franklin, 1986) as well as being indicative of forest productivity
(Ollinger et al., 2007).

We therefore conclude that the SVR ratio captures a unique
spectral relationship linked to forest age/size class, density, and
potentially species-specific absorption of visible light which is missed
using individual SWIR bands or commonly used spectral derivatives
(TC3, MSI or NDVI-related indices).

4.2. Seasonal factors

The unique advantage afforded by winter Landsat data (with snow
cover) for forest structuremodeling andmappingwas anticipated based
on earlier investigations using aerial photography (e.g., Sayn-



Table 4
Ordinary least-squares regression R2 values between salient image variables and forest
structure measurements

Path Band Month TBA FIR SPRUCE DEC CON

26 SVR Mar 0.01 0.21 0.42 0.35 0.36
26 SVR May 0.32 0.45 0.75 0.73 0.74
26 SVR Jul 0.44 0.33 0.57 0.52 0.55
26 SVR Sep 0.26 0.35 0.57 0.53 0.54
26 BLUE Mar 0.30 0.03 0.04 0.05 0.05
26 BLUE May 0.30 0.28 0.48 0.48 0.49
26 BLUE Jul 0.13 0.02 0.06 0.08 0.09
26 BLUE Sep 0.15 0.05 0.10 0.10 0.10
27 SVR Feb 0.02 0.26 0.51 0.45 0.45
27 SVR Apr 0.20 0.21 0.49 0.57 0.57
27 SVR May 0.32 0.25 0.58 0.67 0.67
27 SVR Jul 0.27 0.26 0.50 0.51 0.53
27 SVR Aug 0.31 0.28 0.52 0.53 0.55
27 SVR Oct 0.18 0.18 0.24 0.24 0.25
27 BLUE Feb 0.27 0.00 0.00 0.00 0.01
27 BLUE Apr 0.08 0.09 0.17 0.23 0.23
27 BLUE May 0.06 0.05 0.13 0.19 0.19
27 BLUE Jul 0.00 0.01 0.00 0.01 0.00
27 BLUE Aug 0.01 0.00 0.00 0.00 0.00
27 BLUE Oct 0.00 0.15 0.12 0.10 0.09
28 SVR Feb 0.11 0.41 0.59 0.65 0.65
28 SVR Apr 0.50 0.38 0.60 0.70 0.69
28 SVR Jun 0.57 0.49 0.62 0.63 0.61
28 SVR Jul 0.55 0.41 0.52 0.53 0.51
28 SVR Aug 0.53 0.33 0.49 0.56 0.55
28 BLUE Feb 0.27 0.02 0.00 0.00 0.00
28 BLUE Apr 0.19 0.13 0.28 0.42 0.45
28 BLUE Jun 0.05 0.03 0.05 0.07 0.08
28 BLUE Jul 0.00 0.00 0.00 0.00 0.00
28 BLUE Aug 0.04 0.07 0.07 0.08 0.08
28 MSI Feb 0.09 0.15 0.31 0.44 0.46
28 MSI Apr 0.40 0.11 0.30 0.47 0.49
28 MSI Jun 0.38 0.23 0.35 0.38 0.37
28 MSI Jul 0.20 0.07 0.08 0.06 0.05
28 MSI Aug 0.34 0.02 0.06 0.09 0.08

Highest values for each structure attribute in bold.

Fig. 6. Scaled absolute PLS band loadings by month for the five structure variables for
paths 26 (A), 27 (B), and 28 (C).
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Wittgenstein,1961) and Landsat TM imagery (Wolter et al.,1995;Wolter
& White, 2002). In general, April and May leaf-off satellite imagery was
critical for this studybecauseunderstoryconifers, particularly balsamfir,
are not obscured by deciduous overstory foliage (Sayn-Wittgenstein,
1961). Images from these two months yielded the strongest individual
relationships between salient spectral variables and forest structure
(Table 4). However, the full model results for path 27 and 28 (Fig. 4B)
show that imagery with sufficient snow cover may have provided an
additional advantage by 1) covering spectrally variable forest under-
growth that can confound forest structure signatures (e.g., Brown et al.,
2000; Chen & Cihlar, 1996; White et al., 1995) and 2) by providing a
uniformly bright background that accentuates tree crowns and their
shadows (Seely,1949); aswell as spectral factors linked to forest density,
height, and age (Horler & Ahern, 1986).

The pitfalls of usingwinter Landsat data for forest structuremapping
relate principally to the effect of low sun angle illumination on strong
topography, but canopy snow retention may be equally problematic
(Beaubien, 1979). The terrain within this study area is generally gentle
and of minimal consequence. Nevertheless, our decision not to acquire
imagery fromDecember or Januarywas intended tominimize sun angle
effects. There is, however, a persistent risk of introducing spectral
problems associated with snow retention in canopies (Sayn-Wittgen-
stein, 1961), particularly if imagery is acquired closely following a
snowfall event. In this study, image acquisitions were all greater than
two weeks after snowfall events, thus reducing this concern. It is
possible that the lower March loadings (compared to February)
observed for the full PLS model in path 26 (Fig. 6) are related to both
poor radiometric quality of these winter Landsat data, as described
above, and to retention of canopy snow, but specific determination of
any canopy snow effects is not possible.
4.3. Accuracy of PLS regression models among non-host conifer stands

PLS models worked very well to predict BAwithin stands consisting
of host tree species (spruce/fir), but were less precise when applied to
stands dominated by other conifer species (except tamarack and jack
pine). Concurrently, mapping accuracy for FIR within non-host cover
types was more robust and encouraging. PLS regression models grossly
overestimate the relative amount of spruce within non-host conifer
types, such as red pine, white pine, and white cedar. It is important to
note, however, that red andwhite pine dominated forests comprise only
a fraction of total forest area compared to the vast spruce/fir-dominated
forest type in this region, and the area of cedar isminuscule. The fact that
modeled TBA results for jack pine may be better aligned with reality is
significant, since jack pine is a close second in terms of total forest area
after spruce/fir forests in this region. However, additional ground data
are needed to assess the validity of any preliminary relationships
regarding jack pine. The existence of a good stand typemap (e.g.,Wolter
et al., 1995) can ensure that the results are interpreted and used
correctly.

4.4. PLS model accuracy and balsam fir

The lower prediction accuracy of the PLS regression models for FIR
in paths 26 and 27 (Fig. 2, Table 3) is likely related to smaller observed



Table 5
Results of independent model validation using 120 plots for all species (A) and for the 35
plots that contained primarily host tree species (B)

A Intercept Slope R2 RMSE

TBA 13.84 0.27 0.22 7.82
FIR 7.67 0.41 0.69 5.55
SPRUCE 20.46 1.25 0.81 15.26
DEC 19.80 1.62 0.75 15.29
CON 10.47 1.19 0.62 18.32

B Intercept Slope R2 RMSE

TBA 5.24 0.65 0.63 4.81
FIR 3.36 0.76 0.78 3.05
SPRUCE 12.58 0.80 0.91 10.54
DEC 5.73 0.67 0.96 5.24
CON 28.49 0.70 0.94 6.84
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size classes for balsam fir compared to the spruces. Although, balsam
fir is the most abundant conifer species in the region, it frequently
occupies only an understory canopy position (b5 m tall) of relatively
small stem diameter (b10 cm) usually below quaking and bigtooth
aspen (P. tremuloides and P. grandidentata, respectively), paper birch
(B. papyrifera), or older-growth white spruce. In other cases, balsam fir
exists as either a sparse overstory component among the associates
listed above, or rarely in pure stands. In contrast, white spruce in these
forests generally consists of larger trees (e.g., 30–60 cm dbh).
However, both prediction models slightly overestimate at low relative
BA and underestimate at high relative BA (Fig. 2).

4.5. Practical ramifications and recommendations

Soon, researchers will have open access to literally hundreds of
Landsat images as the United States Geological Survey (USGS)
transitions to free electronic data retrieval from the national archive.
Thus, PLS regression may become an invaluable tool for modeling a
variety of ecological variables and processes given the sheer volume of
data available in the Landsat archive.

In this study, we were able to acquire at least four different image
dates (with good seasonal diversity) common to both rows in each path.
However, in application it is likely that the PLS strategymay not perform
as well in study areas where greater cloud frequency limits seasonal
diversity of available imagery. For the application described in this study,
the optimal numberof imagedates and seasons has yet to bedetermined.

As previously noted, it is apparent from both this work and from the
literature that SWIR-based indices are especially important for
characterizing forest structural attributes. Efforts to map structure in
forest ecosystems should continue to include SWIR derivatives, but also
investigate the usefulness of SVR. In addition, the importance of high
quality winter satellite data (with snow cover) at these and higher
latitudes is undeniable, and should be included in future studies of this
nature.

5. Conclusions

Effective characterization of spruce budworm activity, especially in
the context of anthropogenic disturbances, requires comprehensive
information on the extent and abundance of its preferred host species,
balsam fir, white spruce, and to a lesser extent black spruce. We
demonstrate the utility of multi-temporal Landsat data and PLS
regression to simultaneously measure relationships between multiple
spectral and host-specific structural variables. In general, the PLS
models performed very well within the limits of host-specific cover
types, while extrapolation to red/white pine and cedar was poor. By
and large, the ability to measure structural aspects of host species
within pine- and cedar-dominated stands was poor, as ground data for
these stands was not gathered, and hence, the spectral variability
within these stands was not factored into the PLS models. Never-
theless, the TBA of pure tamarack stands and the FIR in non-host
conifer stands were both predicted remarkably well using PLS models.

We identified important seasons and spectral variables for mapping
host-species forest structure in this region using Landsat data. For
example, imagery fromFebruary (with snowcover) andMaywere found
to be very important for host-species structure mapping in Minnesota
and neighboring Ontario apparently because 1) the bright snow cover
accentuates conifer crowns, 2) visibility of understory conifers is
improved for these leaf-off dates (particularly May due to the higher
sun angle),while 3) uniformsnowcover in February hides the otherwise
spectrally diverse forest floor. In terms of spectral sensitivity, we found
SVR was similar or more responsive to forest structure than Wetness
(TC3),MSI, or either SWIRband alone, except TBAwhere visible bluewas
most important in two of the three Landsat paths analyzed.

As the availability of Landsat data expands, the PLS regression
strategy provides an attractive alternative for handling multiple,
collinear image variables. Future research should investigate whether
PLS regression can sufficiently distinguish forest structure among a
greater diversity of forest types, and/or whether data having higher
spatial resolution (e.g., ASTER or SPOT) or longer wavelength (e.g.,
SAR) will improve results for all forest types in this region.
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